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1 Introduction

The Look and Say Sequence, otherwise known as the See what you Say Sequence, goes
like this: 1, 11, 21, 1211, 111221, 312211.... Its main use in mathematics before now has
been to gain a form of petty revenge on colleagues. Alice will give the sequence to Bob,
asking innocently if he might be able to help with her latest research project. Bob will
go away and come back hours later, admitting to Alice that he cannot guess at the
generating rule for the sequence, whereupon Alice will reveal that all you have to do is
read out the numbers. You start with 1, and read that as “One one”, or 11. This, you
read as “Two ones”, or 21, which is in turn read as “One two, one one” or 1211 and so
on. Bob leaves, feeling stupid that he failed to guess at such an apparently simple idea,
and the cause of mathematics is not advanced at all.

In this paper, I offer a remedy in the form of a number of small proofs which hint at
much deeper structures within the sequence. My aim is to turn it from a curiosity into a
rigorous object, with a well-formalized theory and links to other areas of mathematics,
that can stand up to further analysis. The OEIS mentions very few papers written
about this sequence (A005150); it is entirely possible that mine is the first to attempt
to analyze it in such a way.

2 Notation and definitions

The Look and Say Sequence is singularly poorly designed to be defined by normal math-
ematical notation. I have therefore invented some of my own. The notation ++ means
“Concatenate”, so 21++17 = 2117. For convenience, we will denote the n-th number in
the sequence by Ln, and the n-th number in the sequence in base b by bLn. We define
the Look and Say Sequence algorithmically. To generate Ln+1 from Ln, do the following:

1. Split Ln, into the smallest possible number of strings that each consist of repetitions
of one digit only. For example, we split 111221 into 111, 22, and 1.

2. Replace every string of length k containing only the digit a with the string k++a.
For example, we replace 111 with 31 as it contains only the digit 1 and is of length
3.

3. Recombine the strings in the original order. For example, we recombine the given
strings to get 31++22++11 = 312211, which is the number that comes after
111221 in the sequence.

Note that this means that the substring 1111 will give rise to 41, not 2121. Should a
substring exist that could have been written more succinctly, it will be called malformed.
Obviously, no malformed substrings should ever arise in any Look and Say Sequence
number. The classical sequence (my notation) arises from letting L0 = 1.

3 Preliminary analysis

Theorem 1 No member of the classical sequence will contain a digit greater than 3.
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If Ln+1 contains a digit greater than 3, Ln must contain a string consisting of more than
3 repetitions of a single digit. Consider the smallest n for which this is true. Then Ln

must contain a substring string kkkk..., which can be read in a number of ways. If it, or
part of it, denotes kk or more of something, then Ln−1 also contained a string of more
than 3 repetitions of a single digit as any two-digit number must be bigger than 3. Thus,
it must denote either some k, k of k, and k of something, or k of k and k of k. In either
case it is malformed. We now have a contradiction as no malformed strings should ever
exist. Note that this also implies that no member of the classical sequence will contain
more than 3 consecutive instances of a single digit.

Theorem 2 The classical sequence is exactly the same in any base greater than or equal
to 4.

This follows immediately from the last theorem. If only three symbols – 1, 2, 3 – are
required to form the classical sequence, then it is formed in exactly the same way if we
carry out the algorithm in any base that contains three or more non-zero symbols.

This leaves the question of what to do in bases 1, 2, and 3, which form the next large
chunk of this paper.

4 The unary classical sequence

Theorem 3 If the classical sequence is generated in base 1, it gives rise to the positive
integers.

We prove this by induction. For the base case, 1L0 = 1 by the definition of the classical
sequence. Now, assume that 1Ln = n. Expressed in base 1, n is a string of length n
containing only the digit 1. Thus, to get 1Ln+1, we replace this string with n++1. But,
in base 1, this is just a string of length n + 1 containing only the digit 1, which is also
the expression of n + 1 in base 1. This shows that if 1Ln = n, then 1Ln+1 = n + 1 and
completes both the inductive step and the proof.

This does to a large extent preclude interesting and novel analysis of the unary clas-
sical sequence since the sequence 1, 2, 3, 4... has already been studied fairly exhaustively.
With this in mind, we go on to the far more complicated binary classical sequence.

5 The binary classical sequence

The binary classical sequence is generated similarly to the unary one. We start with
1 and 11, as usual. Then, instead of generating 21, we instead have 101 as 2 is 10 in
binary. The next number in the sequence is thus 111011, and so on. We may prove a
number of results about this sequence.

Theorem 4 2Ln will never contain a string of more than two zeros.
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To prove this, we consider whether there exists a 2Ln−1 which would give rise to a string
of more than two zeros. Clearly, such a string must be generated by a longer string of
zeros – the string “00000000” would give rise to 8++0 or, in binary, 100++0 = 1000.
However, such a string could only exist as part of 100000000, since no number used in the
generation of the Look and Say Sequence is given a leading zero. The string 100000000
could come either from a string of 28 zeros, or from a string of 29 1s (which gives us
1000000001). In either case, only an even longer string could have given rise to our eight
zeros. Thus, the previous number in the sequence contains such a long sequence, which
could only have come from an even longer sequence, and so on. Therefore, the length
of 2L1 must be greater than 1. However, 2L1 = 1, so this is clearly absurd and 2Ln will
never contain more than two zeros in a row.

Theorem 5 2Ln will never contain a string of more than four ones.

Consider the smallest n for which 2Ln contains a string of five or more ones. We must
now ask where this string came from. If it denotes nothing more than a longer string of
ones, clearly 2Ln−1 contains a string of five or more ones and there is a contradiction.
Should we split the string to denote 111 or more 1s, followed by 1 or more zeros, then
2Ln−1 contains 11 or more ones and we have the exact same contradiction. Should we
split the string to denote 11 or fewer ones followed by 11 or more zeros, we have a
sequence of three or more zeros in 2Ln−1, which is in contradiction with the previous
theorem. Thus, no matter which way we split the string, we get a contradiction and no
number in the classical sequence will ever contain a string of more than four ones.

Theorem 6 The number of zeros in 2Ln−1 will always be less than or equal to the
number of zeros in 2Ln.

Consider the two previous theorems. For the number of zeros to decrease as n increases,
we must have a string containing a certain number of zeros which gives rise to a string
containing fewer. Since the only strings containing zeros are 0 and 00, which generate
the strings 10 and 10++0 = 100 respectively, the number of zeros in successive numbers
in the binary classical sequence will never decrease.

Theorem 7 2Ln−1 is always shorter than 2Ln.

To prove that the length of the binary classical sequence is strictly increasing, we con-
sider all possible substrings. As shown in the proof of the previous theorem, substrings
consisting of zeros always increase in length, going from, for example, 0 to 10. The only
possible substrings consisting of ones are 1, 11, 111, and 1111, by theorem 5. These go
to 11, 101, 111, and 1001 respectively, none of which are shorter than the substrings
that created them. Therefore, any time 2Ln contains a zero, it will be shorter 2Ln+1. By
theorem 6, if 2Ln contains a 0, so does 2Ln+1. Since 2L3 = 101 contains a zero, this the-
orem holds true for all 2Ln where n ≥ 2 by induction. Simple calculation proves the rest.

In summary, the binary classsical sequence is strictly increasing in length as well as
in value, while the number of zeros is increasing. This provides, among other things,
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a fairly elegant proof that the series created by summing the terms of the sequence
does not converge. The next stop on our tour is the “trinary classical sequence”, or the
classical sequence derived in base 3.

6 The trinary classical sequence

Theorem 8 3Ln will never contain a string of more than three of the same digit.

Consider the smallest n for which 3Ln contains more than three of the same digit. The
string kkkk could come from a few different things: kkkk of something else, k of k and
then k of k, as kk of k and then k of something else, or as some k, k of k, and then
k of something else. All of these possibilities are malformed or necessitate that 3Ln−1

also contained more than 3 ks in a row. Either way, we have a contradiction and no 3Ln

should contain more than 3 instances of a single digit in a row.

Theorem 9 3Ln will never contain more than one zero in a row.

Consider the smallest n for which 3Ln contains a string of two or more zeros. This must
be part of 100... or 200..., since substrings with leading zeros are malformed. Now, the
string 100... either implies that 3Ln contained three zeros, or it implies that it contained
nine or more of something else. Either way, we have a contradiction. A similar argument
works for 200....

Theorem 10 The number of zeros in 3Ln−1 will always be less than or equal to the
number of zeros in 3Ln.

Similarly to the equivalent proof for the binary sequence, we consider strings of zeros
that can arise within the trinary classical sequence. There is only one, 0, which gives
rise to the sequence 10. As these have the same number of zeros, it is clear that the
number of zeros can never decrease from 3Ln−1 to 3Ln.

Theorem 11 3Ln−1 is always shorter than or the same length as 3Ln.

Consider all possible substrings of 3Ln−1. Those of length 1 and 2 give rise to a string
of length 2 (for example, 1 goes to 11, which itself goes to 21), while those of length 3
give rise to a string of length 3 (222 gives rise to 102 since 3 is 10 in base 3). Thus, no
string ever gives rise to a string shorter than itself.

7 The quatenary classical sequence

The most important theorem of this section has been proven earlier: theorem 1. However,
it is still worth considering this base separately in order to establish two results, which
the reader will undoubtedly notice have parallels in all other bases.

Theorem 12 Ln will never contain strings of more than two 3s.

5



Consider the smallest n for which Ln contains the string 333.... Because, as a consequence
of theorem 1, Ln cannot contain a string of length 4 or more, the string 333..., which
contains a 33, implies that Ln−1 also contains three threes. This is a contradiction.

Theorem 13 Ln−1 is always shorter than or the same length as Ln.

Split up Ln−1 according to the first step in the algorithm. By theorem 1, we now have
strings of length 1, 2, or 3 containing the digits 1, 2, or 3. Strings of length 1 are replaced
in Ln by strings of length 2, as are strings of length 2. For example, 2 is replaced by
12 and 11 is replaced by 21. Therefore, if we are to replace a string with something
shorter, the original string is of length 3 and will be replaced by a string of length 2.
Now, consider what can follow a string of length 3. Clearly, a string of length 3, as, for
example, the string 333222 seems to imply that the previous number either contained a
certain number of 3s followed by three threes, which should not be written as x333 but
instead as (x+ 3)++3, or three twos and two twos, which should not be written as 3222
but as 52. The problem is just the same if the two strings of three digits are separated
by an even number of other digits. For example, the string 3332211333 could be read as
“three threes, three twos, two ones, one three, two threes” or “x threes, three threes...”,
both of which are wrong. Therefore, the only possibility is for a string of length 3 to
be followed by zero or more strings of length 2 and then a string of length 1. Taken
together, this entire ensemble does not change in length – the string of length 3 decreases
to one of length 2, the string of length 1 increases to one of length 2 and the strings of
length 2 each remain the same length. The only alternative is for the sequence to end
with a string of length 3 and then a series of strings of length 2. In this case, because the
length of every member of the sequence except the first is even, there must be a string
of length 1 somewhere before that is not yet matched up with a string of length 3 in this
way. Note that it is impossible to match up two strings of length 3 as shown earlier in
this paragraph.

8 Tabulation of results

It is now interesting to create a table of maximum lengths of strings of certain digits for
the classical sequence in certain bases. The upper bounds have been established earlier;
examples of strings that reach these upper bounds can be easily found through direct
calculation.

Base 1 Base 2 Base 3 Base ≥ 4
Maximum 0s 0 2 1 0
Maximum 1s ∞ 4 3 3
Maximum 2s 0 0 3 3
Maximum 3s 0 0 0 2

We note that the number of consecutive digits decreases as the base increases. This is
due to the greater information density of a single symbol in a higher base: more symbols
would be needed to encode a given number in lower bases.
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9 Conclusion

This paper has provided a rigorous study of the Look and Say Sequence and its behaviour
in different bases. We have observed several common threads: the length of the sequence
is always increasing; there is a hard limit on the length of substrings containing only one
distinct digit; and the total number of occurrences of particular digits within any number
in the sequence will obey certain rules. These are by no means the only results obtainable
from this sequence – I have truncated this paper due to respect for my readers’ valuable
time rather than a lack of ideas. I believe, however, that the most important innovation
of this paper is to place the Look and Say Sequence firmly within the bounds of serious
professional Mathematics. Previously, the most profound result about it was due to
John Conway, a man known for his mathematical iconoclasm and strongly idiosyncratic
sense of “fun.” Should you have had any fun reading this, it was unintentional and I
sincerely apologise.
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